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Abstract

Learning transferable latent actions from large-scale ob-
ject manipulation videos can significantly enhance gener-
alization in downstream robotics tasks, as such represen-
tations are agnostic to different robot embodiments. Ex-
isting approaches primarily rely on visual reconstruction
objectives while neglecting physical priors, leading to sub-
optimal performance in learning universal representations.
To address these challenges, we propose a Universal La-
tent Action Learning framework that takes task instruc-
tions and multiple frames as inputs, and optimizes both
future frame reconstruction and action sequence predic-
tion. Unlike prior works, incorporating action predictions
(e.g., gripper or hand trajectories and orientations) allows
the model to capture richer physical priors such as real-
world distances and orientations, thereby enabling seam-
less transferability to downstream tasks. We further decom-
pose the latent actions into learnable motion and scene to-
kens to distinguish the robot’s active movements from en-
vironmental changes, thus filtering out irrelevant dynam-
ics. By distilling the learned latent actions into the latest
VLA models, we achieve strong performance across both
simulated (SIMPLER and LIBERO) and real-world robot
settings. Notably, with only 10 real-world trajectories per
task collected on a Franka robot, our approach successfully
completes all five challenging tasks, demonstrating strong
few-shot transferability in robotic manipulation.

1. Introduction
Latent action learning has recently emerged as a promis-
ing research direction in the field of vision-language-action
(VLA) models [5, 26, 34, 43, 51, 61, 65]. Its core idea is
to extract and compress motion semantics between consec-
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utive frames into compact latent representations that are ag-
nostic to different robot embodiments. Unlike traditional
methods [5, 26, 42] that rely on annotated action data, this
paradigm enables models to leverage large-scale human
videos, thereby significantly expanding the available train-
ing sources for robotic policies and overcoming the limita-
tions of conventional robot datasets in terms of diversity and
generalization.

However, as shown in Figure 1, existing latent action
models (LAM) [8, 9, 12, 57] usually suffer from the follow-
ing challenges. First, the absence of task instruction guid-
ance prevents the latent action from capturing task-relevant
changes (e.g., Genie [7]). Second, insufficient utilization of
multiple frames results in imprecise latent action represen-
tations incapable of accurately capturing motion dynamics
(e.g., UniVLA [9]). Third, the latent actions often focus on
visual appearance changes but lacking physical awareness,
causing a semantic gap between latent action representa-
tions and real executable actions. These limitations hinder
the effective transfer of the learned latent actions to down-
stream tasks, as they fail to provide reliable cues for plan-
ning, limiting their ability to generalize from visual percep-
tion to real-world robotic execution.

To address these issues, we propose LatBot, a universal
latent action learning framework for robotic tasks, which
learns latent actions under the guidance of task instructions
and multi-frame inputs, constrained by both visual and ac-
tion generation objectives. This design enables VLA mod-
els to generalize more effectively across downstream tasks
with few-shot samples (e.g., 25 demonstrations used in ex-
isting works [45]). First, we design two complementary
learnable latent action tokens: scene tokens to capture pas-
sive environmental changes such as object position, pose,
and background dynamics, and motion tokens to encode the
robot’s active movements such as end-effector translation,
rotation, and gripper actions. This design explicitly dis-
entangles environmental variations from robot-induced mo-
tion, leading to more structured latent actions that improve
motion understanding and action prediction. Second, we
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Figure 1. Different paradigms in latent action modeling (LAM). Existing methods often ignore disentangling robot actions from environ-
mental changes. In contrast, we learn a disentangled representation and decode latent actions into both the future visual frame Vt+k and
physical actions At:t+k that enables more accurate and transferable control for downstream tasks.

propose a unified decoder that conditions on the latent ac-
tions to jointly guide future frame reconstruction and inter-
frame action generation. It enables the model to learn uni-
versal latent actions that not only enhance the prediction
of diverse real-world robotic manipulation scenes, but also
bridge the gap with real actions, ultimately improving trans-
ferability to downstream manipulation tasks. To optimize
latent action representations, we introduce bidirectional in-
teractions between visual and action representations, where
scene dynamics guide action generation and motion tokens
refine visual reconstruction, enabling mutual reinforcement.

To effectively transfer the learned latent action knowl-
edge into VLA models, we present an effective strategy for
knowledge distillation. This strategy enables VLMs to in-
herit latent action knowledge while preserving its reason-
ing and instruction-understanding capabilities. It also al-
lows the model to capture rich physical priors, ultimately
enhancing generalization and transferability in real-world
robotic manipulation. Specifically, we design two types of
loss functions: Latent Action Alignment Loss and Reason-
ing Preservation Loss. The former transfers physical pri-
ors of latent actions from the teacher model (LAM) to the
student (VLM) by aligning their latent action representa-
tions through both MSE and KL divergence. This helps the
student learn physics-aware latent actions that can capture
task-relevant motion patterns and future visual changes, al-
lowing the model to rapidly adapt to new manipulation tasks
with few shot samples. The latter adopts a next-token pre-
diction objective, enabling the student to generate subtask
descriptions based on the current frame and task instruc-
tion. It preserves the reasoning and instruction-following
abilities of VLMs, ensuring that the distilled model remains
robust and generalizable for complex robotic manipulation.

We pre-train the latent action model and perform knowl-
edge distillation on diverse object manipulation datasets en-
compassing both robot and human hand demonstrations.
These datasets include OXE [52], AgiBoT [8], and EgoDex
[18] that represents the largest and most diverse pub-

licly available collection of dexterous human manipulation
data. The diversity of scenes and embodiments encour-
ages the model to learn universal latent actions that gener-
alize across visual domains and capture shared task patterns
under different scenes, enhancing transferability to down-
stream robotic tasks. Compared with the latest VLA models
[5, 20], our approach achieves superior performance in both
simulation and real-world environments.

2. Related Work

2.1. Vision-Language-Action Model
Vision–Language–Action (VLA) models extend Vi-
sion–Language Models (VLMs) [1, 54] to generate robot
actions conditioned on visual observations and language
instructions. Early efforts such as RT-1 [6] and Octo [51]
employ transformer-based policies trained on large-scale
collections of robotic trajectories spanning diverse tasks,
objects, and environments. RT-2 [65] further fine-tunes
a pretrained VLM with both vision–language data and
robotic demonstrations, discretizing actions into text-like
tokens. Following a similar strategy, OpenVLA [26] adapts
the Prismatic VLM [24] on the Open X-Embodiment
dataset [41]. Other approaches integrate VLMs with spe-
cialized action modules. For instance, RoboFlamingo [28]
appends a policy head for action prediction, while π0 [5]
leverages PaliGemma [3] for scene understanding and a
flow-matching expert for continuous control. Furthermore,
several methods also incorporate goal images [4] or video
prediction [19] as auxiliary tasks to enhance planning and
execution. Nevertheless, these methods rely heavily on
interactive datasets with ground-truth action labels, which
substantially limits the scalability and generalization of
VLA models.

2.2. Latent Action Model
Recent research [9, 11, 57] has explored latent actions
to address the scalability limitations of VLA models that
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rely on ground-truth action labels. Latent actions provide
compact and transferable representations, enabling learn-
ing from large-scale, unlabeled videos. Early studies such
as Genie [7] and LAPO [47] introduced unsupervised la-
tent action modeling in video game environments, while
DynaMo [14] extended this idea with inverse and for-
ward dynamics to learn structured state representations. In
robotic learning, several methods [9, 11, 57, 58] incorpo-
rate latent actions into VLA pretraining, enabling policy
learning without explicit action supervision. For example,
LAPA [57] and ViLLA-X [11] extend latent action learning
to both human and robot videos, facilitating cross-domain
transfer between human demonstrations and robotic exe-
cutions. Moto-GPT [12] focuses on motion-centric repre-
sentation learning by converting videos into discrete mo-
tion tokens and co-finetuning them with real robot actions
to bridge motion understanding and control. UniVLA [9]
adopts a two-stage pipeline to learn task-centric latent ac-
tions, which shows promising results. However, existing
approaches remain limited by sub-optimal latent represen-
tations. In contrast, we propose to explicitly disentangle la-
tent actions into transferable components (including motion
and scene tokens), and align them with real physical states
(e.g., translation and rotation), which makes them easier to
distill into downstream robotic tasks.

3. Approach
In this section, we introduce the proposed universal latent
action learning framework, LatBot, which consists of two
key components: Latent Action Disentanglement and Uni-
fied Decoder, which are jointly optimized during training.
After pre-training the latent action representation, we fur-
ther distill the learned motion knowledge into VLMs to en-
hance their action awareness while preserving their original
reasoning capability. This enables robot policies to effec-
tively generalize from task reasoning to action execution.

3.1. Decoupled Latent Action Representation
Current latent action models predominantly use visual re-
construction as the training objective, which biases them
toward learning image-space features rather than motion
representations grounded in physical actions [14, 47, 57].
As a result, the learned latent actions remain far from exe-
cutable robot actions, limiting the model’s ability to rapidly
adapt to new environments with few samples. Narrow-
ing this gap is essential for establishing a reliable per-
ception–action mapping and achieving efficient transfer to
novel scenes. Moreover, existing methods [11, 57] typically
entangle all visual variations, including both robot-induced
motion and environment-induced changes within a single
latent action representation. This entanglement introduces
task-irrelevant signals (e.g., background motion or lighting
fluctuations), weakens the correspondence between latent

actions and true robot dynamics, and ultimately leads to in-
accurate action predictions in manipulation tasks.

To address these issues, we propose a Universal Latent
Action Learning framework that extracts latent actions from
multi-frame observations under task-instruction guidance
and jointly optimizes them via visual reconstruction and ac-
tion generation objectives. This design enables the model
to acquire physics-related priors (e.g., real-world distances
and orientations) that more closely align with executable ac-
tions, thereby improving its transferability to downstream
robotic manipulation tasks.

Specifically, we propose a Decoupled Latent Action
Representation that separates the latent action Za into two
components: the motion representation Zmot, capturing
the active changes driven by the robot’s own motion, and
the scene representation Zsce, capturing the passive scene
changes induced by environmental dynamics. This de-
composition reduces task-irrelevant noise and establishes a
clearer correspondence between robot motion, environmen-
tal variations, and latent action representations, thereby en-
hancing performance in downstream manipulation tasks. To
extract two types of latent action presentations, we propose
to leverage a pretrained vision-language model (VLM) due
to its strong contextual understanding to reason about latent
actions by integrating visual observations with language in-
structions. This process can be formulated as follows:

{Zsce, Zmot} = fvlm(Vt:t+k, ℓ), (1)

where fvlm denotes the VLM, which takes the visual frames
as input from timestep t to t+k along with the task instruc-
tion ℓ. In particular, we introduce two learnable latent action
tokens, [CP SCE] and [CP MOT], into the VLM’s vocabu-
lary, allowing it to encode contextual information into struc-
tured scene representations Zsce and motion representations
Zmot, respectively. To fully leverage the VLM’s instruction-
following ability for latent action summarization, we de-
sign an instruction-tuning template that guides the model
in extracting the corresponding latent action representations
from multi-frame sequences.

3.2. Unified Latent Action Decoding
To ensure that the latent actions focus on the dynamics
changes from multiple frames, we further use them as con-
ditional inputs to jointly guide the reconstruction of the fu-
ture frame and the generation of inter-frame actions. In
this way, the visual reconstruction constraint encourages
the latent actions to capture observable scene variations,
while the action generation objective provides physical-
level guidance, enabling the model to establish a closer
connection between the latent action and physical motions.
Consequently, the model acquires universal latent actions
that capture both visual dynamics and physical priors, en-
hancing prediction across diverse manipulation scenarios
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Figure 2. Illustration of the proposed latent action distillation approach for VLA models. By optimizing the VLMs with latent action
alignment loss and reasoning preservation loss, we distill generalizable action representations learned from both robot and human hand
demonstration videos, while simultaneously maintaining sub-task planning capabilities. This is followed by an action expert module for
continuous action prediction.

and aligning more closely with real robot actions, thereby
improving downstream task transferability.

Specifically, we propose a unified decoder, where scene
and motion information are progressively fused through
layer-wise bidirectional interactions, which can help the
model learn latent actions that are better aligned with real
robot dynamics. The decoder is initialized from pretrained
image generation model SANA [55], which can leverage the
pretrained model’s powerful generative and contextual un-
derstanding capabilities. At each layer of the decoder, the
scene and motion representations interact and exchange in-
formation, enabling progressive fusion between spatial and
dynamic cues. Finally, the future visual frame Vt+k and
inter-frame actions At:t+k are decoded based on the fused
scene and motion features. This bidirectional fusion mech-
anism allows scene dynamics to guide action generation,
while motion tokens refine visual reconstruction, enabling
mutual reinforcement between the two modalities.

3.3. Knowledge Distillation for VLA Models
Although the latent action model (LAM) effectively learns
physically grounded latent action representations, its capa-
bilities are limited to scene reconstruction and inter-frame
action generation. To bridge this gap and transfer the
learned knowledge to the vision–language–action (VLA)
model, we propose a latent action knowledge distillation
strategy. This approach enables the VLA to inherit motion
understanding and physical priors from LAM while pre-
serving its original vision–language reasoning abilities. As
a result, the VLA can extract features closer to the action
modality and acquire motion planning capabilities, facili-
tating efficient transfer to downstream manipulation tasks.

Specifically, given a pretrained latent action model (de-
noted as flam), a language instruction ℓ, and multiple frames
{Vt}Tt=1, the LAM first extracts latent action representations
Za conditioned on the instruction:

Za = flam(ℓ, {Vt}Tt=1), (2)

which captures the implicit correspondence between vi-
sual dynamics and task semantics. Meanwhile, the vision-
language model (VLM) within the VLA model generates
its own action representation conditioned only on the first
frame V1 and the same task instruction:

Ẑa = fvlm(ℓ, V1), (3)

where Ẑa is expected to contain future motion information,
which is generated by VLMs.

To align these two types of representations, we design a
Latent Action Alignment Loss La that combines a recon-
struction term and a distribution alignment term:

La = ∥Ẑa − Za∥22 + KL
(
p(Ẑa) ∥ p(Za)

)
, (4)

where the first term enforces feature consistency and the
second encourages distributional alignment, allowing the
VLM to gain future frame forecasting capability. Unlike ex-
plicit action supervision in VLA models, latent actions are
more embodiment-agnostic and naturally align with VLM
representations. However, direct alignment may inadver-
tently compromise the VLM’s inherent language under-
standing and reasoning abilities. To preserve these capa-
bilities, we introduce a Reasoning Preservation Loss Lr to
guide sub-task planning in robot manipulation tasks:

Lr = −
∑
i

log p(wi+1 | w≤i, ℓ, V1), (5)
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Table 1. Comparison of different VLA models across four tasks in two SIMPLER settings on the Google robot.

Google
Robot Method

Pick
Coke Can

Move
Near

Open/Close
Drawer

Open Top Drawer
and Place Apple Avg

Visual
Matching

RT-2-X [52] 78.7% 77.9% 25.0% 3.7% 46.3%
OpenVLA [26] 18.0% 56.3% 63.0% 0.0% 34.3%

π0 [5] 87.3% 35.0% 72.6% 16.0% 52.7%
SpatialVLA [43] 86.0% 77.9% 57.4% 0.0% 55.3%
RoboVLM [32] 76.3% 79.0% 44.9% 27.8% 57.0%

villa-X [11] 81.7% 55.4% 38.4% - -
DD-VLA [30] 85.4% 67.5% 60.6% - -

MemoryVLA [50] 90.7% 88.0% 84.7% 47.2% 77.2%
Ours 96.7% 91.7% 90.4% 33.3% 78.0%

Variant
Aggregation

RT-2-X [52] 82.3% 79.2% 35.3% 20.6% 54.4%
OpenVLA [26] 60.8% 67.7% 28.3% 1.2% 39.3%

π0 [5] 85.2% 40.8% 42.1% 16.0% 46.0%
SpatialVLA [43] 88.0% 72.7% 41.8% 6.3% 51.8%

DD-VLA [30] 82.5% 64.6% 23.6% - -
MemoryVLA [50] 80.5% 78.8% 53.2% 58.3% 67.7%

Ours 95.7% 78.3% 73.0% 33.3% 70.1%

Table 2. Comparison of different VLA models across four tasks in the SIMPLER (Visual Matching) setting on the WidowX robot.

Method
Put Spoon
on Towel

Put Carrot
on Plate

Stack Green Block
on Yellow Block

Put Eggplant
in Yellow Basket Avg

SpatialVLA [43] 16.7% 25.0% 29.2% 100% 42.7%
CogACT [27] 71.7% 50.8% 15.0% 67.5% 51.3%

π0 [5] 62.5% 66.7% 25.0% 12.5% 41.7%
π0.5 [20] 79.2% 58.3% 16.7% 66.7% 55.2%

villa-X [11] 48.3% 24.2% 19.2% 71.7% 40.8%
UniVLA [9] 52.8% 55.6% 2.8% 80.6% 47.9%

MemoryVLA [50] 75.0% 75.0% 37.5% 100% 71.9%
Ours 95.8% 87.5% 83.3% 83.3% 87.5%

which preserves the VLM’s reasoning ability and enables it
to autoregressively predict the i+ 1 token based on preced-
ing tokens, generating coherent sub-task descriptions con-
ditioned on the current frame and task instruction. Finally,
the overall objective for latent action knowledge transfer is
defined as:

L = La + λr · Lr, (6)

where λr balances the trade-off between latent action align-
ment and reasoning preservation and default to 0.5 in our
experimental settings.

Action Expert Finetuning: after latent action knowl-
edge distillation, the VLM not only retains its original vi-
sion–language reasoning capabilities, but also gains the mo-
tion planing abilities and generates features that are closely
aligned with actions. However, these outputs are still la-
tent representations and not directly executable as robot
actions. Therefore, we further perform finetuning in both

real-world and simulated robotic environments by incorpo-
rating an action expert, enabling precise generation of exe-
cutable actions. To provide fine-grained supervision for ac-
tion generation, we decompose the overall action loss into
two components:Lee+Lgripper, where Lee denotes the loss
for the end-effector’s translation and rotation, computed us-
ing mean squared error. Lgripper denotes the loss for the
gripper state, computed using binary cross-entropy to en-
courage more deterministic behavior.

4. Experiments

4.1. Implementation Details

Our latent action model (LAM) is pre-trained on a com-
bined dataset of OXE [41], AgiBoT [8], and the human
hand manipulation dataset EgoDex [18], encompassing a
total of one million video episodes. For EgoDex, we lever-
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Table 3. Comparison of different VLA models on the four LIBERO simulation environments.

Method LIBERO-Goal LIBERO-Object LIBERO-Spatial LIBERO-Long Avg

Diffusion Policy [13] 68.3% 92.5% 78.3% 50.5% 72.4%
Octo [51] 84.6% 85.7% 78.9% 51.1% 75.1%

OpenVLA [26] 79.2% 88.4% 84.7% 53.7% 76.5%
TraceVLA [59] 75.1% 85.2% 84.6% 54.1% 74.8%

RDT [34] 68.2% 77.8% 60.2% 29.0% 58.8%
π0 [5] 94.0% 97.8% 91.4% 85.4% 92.2%

UniVLA [9] 95.6% 96.8% 96.5% 92.0% 95.2%
villa-X [11] 91.5% 97.0% 97.5% 74.5% 90.1%
π0.5 [20] 98.0% 98.2% 98.8% 92.4% 96.9%

MemoryVLA [50] 96.4% 98.4% 98.4% 93.4% 96.5%
Ours 98.6% 98.8% 99.0% 95.4% 98.0%

age its rich action annotations, including 3D positions and
6D orientations of both hands, as well as the 3D position
of each fingertip, to provide fine-grained supervision for
learning high-quality latent actions. Detailed specifications
of the action space for both robot and human hand demon-
strations are provided in the supplementary materials. The
subsequent knowledge distillation stage is conducted on the
same dataset. LAM pretraining and the distillation stage
are performed on 16 NVIDIA A100 (40GB) GPUs for 14
and 7 days, respectively. The LAM encoder can be ini-
tialized from pretrained vision-language models such as
PaliGemma [3] or InternVL3.5 [54]. The unified decoder
is initialized from the pretrained image generation model
SANA [55]. We train the model using Fully Sharded Data
Parallel (FSDP) with a per-GPU batch size of 16 and a gra-
dient accumulation step of 2, yielding an effective global
batch size of 512. By default, LAM operates on 16-frame
sequences and represents latent actions using 64 scene rep-
resentations and 64 action representations. During knowl-
edge distillation and fine-tuning, we use π0.5 [20] as the
default VLA backbone.

4.2. Manipulation Benchmark on SIMPLER
The SIMPLER [29] benchmark is designed to bridge the
real-to-sim gap by recreating realistic scenarios for the
Google Robot and WidowX Robot. We evaluate our method
on the SIMPLER benchmark and compare it with a wide
range of recent VLA models. Table 1 reports results on
the Google Robot under the Visual Matching and Vari-
ant Aggregation settings. Across both evaluation proto-
cols, our model consistently achieves the best overall per-
formance. Under Visual Matching, our approach reaches
78.0% average success rate, outperforming all prior open-
source models and improving over π0 [5] by a significant
margin (+25.3%). Notably, our method also surpasses the
closed-source RT-2-X despite using fewer model parame-
ters. Under Variant Aggregation, our model again sets a

new state of the art with 70.1%, exceeding π0 by 24.1% and
RT-2-X by 15.7%. These results demonstrate the robustness
of our model across different real-to-sim evaluation settings
and its ability to generalize to visually altered scenes. As
shown in Table 2, our method exhibits an even more pro-
nounced advantage on the WidowX robot. It achieves an
average success rate of 87.5%, substantially outperform-
ing all existing VLA models. Compared with the strong
baseline π0.5 [20], our method achieves an improvement
of 32.3%. More importantly, when compared with recent
latent-action–based methods such as UniVLA [9] (47.9%)
and villa-X [11] (40.8%), our model delivers gains of 39.6%
and 46.7%, respectively. These results demonstrate that our
method effectively transfers latent-action knowledge into
the VLA domain, thereby improving the model’s robustness
and generalization across diverse tasks.

4.3. Manipulation Benchmark on LIBERO
The LIBERO [31] benchmark consists of four task suites,
which are designed to study lifelong learning in robotic ma-
nipulation. We perform experiments on four task suites,
each comprising 10 tasks with 50 human-teleoperated
demonstrations. Specifically, LIBERO-Spatial, LIBERO-
Object and LIBERO-Goal evaluate the understanding of
the spatial relationships, object types and different task-
oriented behaviors, respectively. LIBERO-Long test the
ability to generalize the long-horizon tasks with different
objects, layouts and goals. We fine-tune our model on the
mixed LIBERO dataset for 60k steps with a batch size of
64. All methods are evaluated over 500 rollouts per task
suite (i.e., 50 rollouts per task). As shown in Table 3, our
method achieves the highest overall success rate of 98.0%
across the four LIBERO environments. Compared with the
baseline π0.5, our method achieves a 3.0% improvement
on LIBERO-Long, indicating that after latent action knowl-
edge distillation, the VLA acquires stronger motion plan-
ning and future-state awareness, which substantially en-
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Figure 3. The real-robot Franka setup is equipped with multi-view observations. Tasks include pick-up, insertion, and so on, requiring both
translational and rotational motions. In addition, we evaluate more practical scenarios involving interactions with real objects such as thin
brushes, heavy frying pans, and real ovens.

Table 4. Success rate comparison across different tasks under varying the numbers of demonstrations for training.

Method
Task 1 Task 2 Task 3 Task 4 Task 5

Avg
10 50 full 10 50 full 10 50 full 10 50 full 10 50 full

π0 [5] 0 0 10% 0 0 10% 40% 40% 60% 0 0 10% 0 0 20% 12.7%
π0.5 [20] 0 0 20% 0 0 10% 60% 60% 80% 0 0 20% 20% 20% 20% 20.7%
Ours 60% 80% 60% 20% 80% 40% 80% 100% 80% 20% 50% 80% 60% 60% 80% 63.3%

hances its performance on long-horizon tasks.

4.4. Real-World Evaluation with Franka Robot

To rigorously evaluate the model’s performance in real-
world robot setups, which involve higher uncertainty and
demand greater generalization from VLA models, we con-
duct a series of manipulation experiments using a Franka
Research 3 robot with 7 degrees of freedom (DoFs) and a
1-DoF parallel gripper.

Task specifications: 1) To assess the instruction-
following and visual understanding abilities, we first design
a color discrimination task where the robot must correctly
pick up a target cup when both a red and a blue cup are
present in its view: Pick up the cup (Task 1). 2) To further
examine the fine-grained manipulation and physical reason-
ing capabilities, we introduce four more challenging tasks:
Put the building block into the corresponding slot (Task 2),
Close the oven (Task 3), Dip the brush in the sauce (Task
4), and Put the pot in the oven (Task 5). Task 2 and Task4
require multi-stage control and precise spatial understand-
ing, while Task 3 and Task 5 demand delicate gripper con-
trol. For example, closing the oven door requires accurately

grasping the handle and applying force along the correct
motion direction.

Note that each task comprises 100 demonstrations, col-
lected via human expert teleoperation. To evaluate the
model’s few-shot transfer capability, we train it using sub-
sets of 10, 50, and all available demonstrations for each
task. We compare our approach against π0 and π0.5. Ta-
ble 4 summarizes the success rates of the models across five
real-world manipulation tasks under varying demonstration
sizes. Our method consistently outperforms the baselines
across nearly all tasks and training settings. For the same
number of the training samples (e.g., 50-shot), all models
are trained using the same batch size and number of GPUs,
with the same amount of training steps and each task is eval-
uated over 10 trials.

For the color discrimination task (Task 1), our model
achieves a 60% success rate with only 10 demonstrations
and 80% with 50-shot, whereas both baselines fail entirely
in the few-shot settings and reach at most 20% with the full
dataset. Interestingly, the 50-shot performance surpasses
that of fine-tuning with all available data. This likely results
from the full dataset containing redundant action patterns,
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Table 5. Impact of each component, evaluated in the SIMPLER benchmark. UAD, DLA denotes the unified action decoder, the decoupled
latent action representations, respectively.

UAD DLA
Put Spoon
on Towel

Put Carrot
on Plate

Stack Green Block
on Yellow Block

Put Eggplant
in Yellow Basket Avg

UniVLA-style 41.6% 54.2% 45.8% 62.5% 51.0%
Ours-v1 ✓ 70.8% 66.7% 37.5% 62.5% 59.4%
Ours-v2 ✓ 70.8% 66.7% 41.7% 66.7% 61.5%
Ours-v3 ✓ ✓ 95.8% 87.5% 83.3% 83.3% 87.5%

which cause the latent actions to encode irrelevant varia-
tions. Consequently, the VLA model may produce slightly
inaccurate actions, reducing overall success. In contrast, the
50-shot subset is more concise and cleaner, allowing latent
actions to focus on the core, task-relevant motion features.

For the multi-stage control task (Task 2), where the robot
must first pick up a building block and then place it into the
corresponding slot, our model demonstrates strong few-shot
learning capability, achieving 80% success with only 50
demonstrations, while the baselines show no success until
trained on the full dataset. This task is particularly challeng-
ing as it requires both sequential reasoning and precise spa-
tial alignment—the robot must grasp the block accurately
and position it correctly in the slot. The strong few-shot
performance indicates that our latent actions capture essen-
tial task dynamics and structure, enabling the VLA model to
plan and execute multi-step manipulations effectively with
limited data. Similarly, in the fine-grained manipulation
tasks (Task 3–Task 5), which demand precise gripper con-
trol and spatial reasoning, our method consistently outper-
forms the baselines. For example, Task 4 challenges the
model with small-object manipulation and fine-grained end-
effector control, as the robot must stably grasp a thin handle
and execute a targeted dipping motion without disturbing
the bowl. In this task, our method achieves a 50% success
rate with only 50 demonstrations, while π0.5 fails to com-
plete the task. When using the full dataset, our approach
surpasses π0.5 by 60%. Task 5 requires precisely grasping
the center of the pan handle, otherwise the task will fail. Our
method outperforms π0.5 in both the few-shot and full-shot
settings. This demonstrates that latent action learning effec-
tively equips the model with structured motion priors and
fine-grained physical understanding, enabling stable small-
object manipulation even under few-shot settings.

4.5. Components Analysis

The ablation results in Table 5 show that both the de-
coupled latent action representations (DLA) and the uni-
fied action decoder (UAD) play essential and complemen-
tary roles in improving manipulation performance. Start-
ing from the UniVLA-style baseline of 51.0%, introducing
DLA alone yields a clear gain to 59.4% by isolating motion-

critical cues from irrelevant environment changes, allow-
ing the model to form cleaner and structured latent actions.
Adding only UAD further improves the average to 61.5%,
as the decoder strengthens the mapping between latent ac-
tions and executable robot actions, reducing modality gap
during action generation. When both components are com-
bined, the model achieves a substantial jump to 87.5%, con-
sistently outperforming all other variants across every task.
This strong synergy arises because DLA provides struc-
tured, manipulation-relevant latent actions, while UAD in-
jects physical priors into the latent action learning process,
enabling the robot to generate more accurate and physically
consistent action predictions.

5. Conclusion

In summary, we propose a universal latent action learning
framework, LatBot, and demonstrates that learning trans-
ferable latent actions from large-scale object manipulation
videos (e.g., robot and human hand), substantially enhances
generalization in downstream robotic tasks. By integrating
task instructions with multi-frame observations, jointly op-
timizing future frame reconstruction and action sequence
prediction, and disentangling latent actions into motion and
scene tokens, our framework effectively captures rich phys-
ical priors while filtering out irrelevant dynamics. Exper-
iments show that distilling these latent actions into VLA
models yields strong performance across both simulated
and real-world robotic platforms. Notably, even with only
a few real-world demonstrations on a Franka robot, our
method shows that latent actions offer a robust, generaliz-
able representation for complex manipulation tasks, includ-
ing pick-and-place of thin objects (e.g., brushes) and precise
block insertion requiring fine-grained motions.

These results highlight a key insight: explicitly incorpo-
rating physical priors and disentangling motion from envi-
ronmental changes significantly enhances the transferabil-
ity of learned latent action representations. For future work,
we aim to extract additional latent tokens from larger and
more diverse manipulation video datasets, further scaling
VLA models and exploring their potential for more com-
plex, long-horizon, and multi-embodiment robotic tasks.
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LatBot: Distilling Universal Latent Actions for Vision-Language-Action Models

Supplementary Material

6. Implementation Details
6.1. Dataset Details
We pre-train the latent action model using a combination of
robot and human manipulation data, with a total of 1 mil-
lion video episodes. For robotic manipulation data, we use
the OXE [41], DROID [25], and AgiBoT [8] datasets. For
human hand manipulation, we utilize EgoDex [18], which
provides detailed hand pose annotations and represents the
largest and most diverse dataset for dexterous human ma-
nipulation to date. EgoDex provides full bimanual skeletal
joints, where each action at a time step is represented by the
3D position of each wrist, the 6D wrist orientation, and the
3D positions of the five fingertips on each hand, resulting in
a 48-dimensional action vector. To unify the action repre-
sentations of robots and human hands during latent action
pretraining, we design a Unified Action Space with a total
dimensionality of 44:
• Dimensions 1–7 (Left hand / left arm): Changes in x,
y, z, Euler orientation, and gripper state.

• Dimensions 8–14 (Right hand / right arm): The same
set of changes for the right hand or right robotic arm.

• Dimensions 15–44 (Bimanual fingertips): 3D position
changes of the ten fingertips (five for each hand), totaling
30 dimensions.

We additionally define a Unified State Space for both
robots and human hands:
• Dimensions 1–8 (Left hand / left arm): Current-time x,
y, z, quaternion orientation (4D), and gripper state.

• Dimensions 9–16 (Right hand / right arm): The same
information for the right hand or right robotic arm.

• Dimensions 17–46 (Bimanual fingertips states): 3D po-
sitions of ten fingertips from both hands at the current
time step.

Since EgoDex provides 6D orientations, we convert them to
Euler angles for the unified action space and to quaternions
for the unified state space. The detailed composition of the
datasets and mixture weights are listed in Table. 6.

6.2. Model Details
Our latent action model employs a vision-language model
(VLM) as the latent action encoder, which summarizes the
inter-frame dynamics into a sequence of latent action rep-
resentations under language guidance. This VLM compo-
nent can be any pretrained vision-language model, such as
PaliGemma [3] or InternVL [54]. In this work, we default
to using InternVL3.5-2B. For the latent action decoder, we
adopt an architecture similar to SANA-1.6B [55] and ini-
tialize it with the corresponding pretrained weights. The

Table 6. Mixture of datasets used during pretraining, including
OXE [41], DROID [25], and EgoDex [18].

Dataset Name Ratio

Fractal [6] 12.8%
Kuka [22] 12.8%
Bridge [53] 11.8%
Taco Play [39] 2.7%
Jaco Play [16] 0.4%
Berkeley Cable Routing [35] 0.2%
Roboturk [38] 2.1%
Viola [64] 0.8%
Berkeley Autolab UR5 [10] 1.1%
Toto [60] 1.8%
Language Table [37] 4.4%
Stanford Hydra Dataset [2] 4.6%
Austin Buds Dataset [63] 0.2%
NYU Franka Play Dataset [15] 0.6%
Furniture Bench Dataset [17] 2.5%
UCSD Kitchen Dataset [56] < 0.1%
Austin Sailor Dataset [40] 2.2%
Austin Sirius Dataset [33] 1.7%
DLR EDAN Shared Control [44] < 0.1%
IAMLab CMU Pickup Insert [46] 0.9%
UTAustin Mutex [49] 2.2%
Berkeley Fanuc Manipulation [62] 7.8%
CMU Stretch [40] 1.5%
BC-Z [21] 6.8%
FMB Dataset [36] 7.1%
DobbE [48] 1.4%
DROID [25] < 0.1%
AgiBoT-α [8] 6.3%
EgoDex [18] 11.1%

instruction-tuning template used to summarize the latent ac-
tion representations, including both the question and answer
components, is defined as follows:

Given the instruction “{sent}” and the video frames,
reason about what happens within this time span. Ex-
plain how the overall scene changes, and identify the
temporal dependencies between consecutive frames.
Highlight the actions, interactions, and transitions
that drive the scene’s evolution. Answer: Scene evo-
lution description: [CP SCE]. Action dynamics de-
scription: [CP MOT].

1
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Figure 4. Analysis of the effects the latent-action distillation on the VLM. Following [23], we visualize the attention maps between the final
text token and the visual features for both π0.5 and our model across different real-robot tasks. The red bounding boxes in the RGB images
mark the task-specific target, while the red boxes on our model’s attention maps highlight the regions with the strongest activations. The
results show that after latent-action distillation, the VLM of our model exhibits enhanced spatial grounding capabilities, with its attention
maps consistently concentrated within the red box.

During the knowledge distillation stage, we use the VLM
from π0.5 as our student model and the teacher model is the
pretrained latent action model.

6.3. Training Details

During the latent action pretraining stage, we first train the
model on a mixed dataset containing both robot and human
manipulation data. The pretraining runs for 14 days on 16
RTX A100 GPUs (40GB), with a per-GPU batch size of 16
and a gradient accumulation step of 2, resulting in a total
batch size of 512. In this stage, all parameters of the latent
action model are optimized except for the vision encoder
of the VLM, which remains frozen. We use the AdamW
optimizer with β1 = 0.9, β2 = 0.95. The learning rate is
initialized at 1.0×10−4, followed by a 2,000-step warm-up
phase and a cosine decay schedule that gradually anneals it
to a minimum of 2.5× 10−6.

For the latent action distillation stage, we use the same
dataset as in pretraining. We jointly fine-tune all parame-
ters of the student model (VLM from the vision-language-
action model) while keeping the teacher model (VLM from
the latent action model) frozen. The learning rate schedule

follows the same configuration as in pretraining. The distil-
lation process lasts 7 days on 16 RTX A100 GPUs (40GB),
with a per-GPU batch size of 8 and a gradient accumulation
step of 2, yielding a total batch size of 256. During both
simulation and real-robot fine-tuning, we jointly fine-tune
the vision encoder, the VLM, and the action expert compo-
nents of the VLA. Following [20], we apply quantile nor-
malization for action and state normalization.

7. Additional Analysis
The effect of the latent action on the VLM. In real-robot
experiments, we observe that our model exhibits strong spa-
tial understanding, enabling it to accurately place blocks
into their corresponding slots. To further examine the ef-
fect of latent action knowledge on the VLM, we analyze the
visual grounding capability of the model before and after
distillation. Since LLMs decode in an auto-regressive man-
ner, information gradually accumulates from earlier tokens
to later ones, causing the final text token to incorporate the
semantic context of the entire instruction [23]. Therefore,
the query vector of the last input text token serves as a rep-
resentative probe for evaluating sentence-level grounding.
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We use the query vector of the last input text token as a
sentence-level representation for computing attention over
image features.

Specifically, given the query token, we extract the atten-
tion weights from the query to all image tokens across all
layers and heads. For each attention head, we take the first
P 2 entries and reshape them into a spatial attention map
with size of P × P , where P denotes the patch size. The
attention map is then binarized by assigning value 1 to el-
ements above the mean and 0 otherwise. Next, we detect
connected components {Ci}Ni=1 using 8-neighborhood con-
nectivity and compute the spatial entropy:

H = −
N∑
i=1

P (Ci) logP (Ci), (7)

where P (Ci) =
|Ci|∑N

j=1 |Cj |
. An attention map is considered

more spatially localized when it exhibits lower spatial en-
tropy. For visualization, we report the attention map with
the lowest spatial entropy among all layers and heads, as it
best captures the model’s most concentrated grounding be-
havior.

As shown in Fig. 4, we compare the attention maps of
the last text token over image features between π0.5 and
our method across various real-world robotic tasks. Results
show that after latent-action distillation, the VLM can lo-
calize task-relevant targets more accurately based on the in-
struction. When distractors are present (Task2), it exhibits
an even stronger response to the true target (reflected by
darker attention regions).

3


	Introduction
	Related Work
	Vision-Language-Action Model
	Latent Action Model

	Approach
	Decoupled Latent Action Representation
	Unified Latent Action Decoding
	Knowledge Distillation for VLA Models

	Experiments
	Implementation Details
	Manipulation Benchmark on SIMPLER
	Manipulation Benchmark on LIBERO
	Real-World Evaluation with Franka Robot
	Components Analysis

	Conclusion
	Implementation Details
	Dataset Details
	Model Details
	Training Details

	Additional Analysis

